- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0000000006000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Parissis, Ioannis (6)
-
Di Plinio, Francesco (3)
-
Accomazzo, Natalia (2)
-
Di_Plinio, Francesco (2)
-
Roncal, Luz (2)
-
Bakas, Odysseas (1)
-
Hagelstein, Paul (1)
-
Plinio, Francesco Di (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Di Plinio, Francesco; Parissis, Ioannis (, Advances in Mathematics)
-
Accomazzo, Natalia; Di_Plinio, Francesco; Hagelstein, Paul; Parissis, Ioannis; Roncal, Luz (, Analysis & PDE)
-
Plinio, Francesco Di; Parissis, Ioannis (, American Journal of Mathematics)
-
Accomazzo, Natalia; Di Plinio, Francesco; Parissis, Ioannis (, Advances in Mathematics)null (Ed.)
-
Di Plinio, Francesco; Parissis, Ioannis (, International Mathematics Research Notices)Abstract We establish the sharp growth rate, in terms of cardinality, of the $L^p$ norms of the maximal Hilbert transform $$H_\Omega $$ along finite subsets of a finite order lacunary set of directions $$\Omega \subset \mathbb{R}^3$$, answering a question of Parcet and Rogers in dimension $n=3$. Our result is the first sharp estimate for maximal directional singular integrals in dimensions greater than 2. The proof relies on a representation of the maximal directional Hilbert transform in terms of a model maximal operator associated to compositions of 2D angular multipliers, as well as on the usage of weighted norm inequalities, and their extrapolation, in the directional setting.more » « less
An official website of the United States government
